考研幫 > 數(shù)學(xué) > 復(fù)習(xí)經(jīng)驗(yàn)

2016考研數(shù)學(xué):線性代數(shù)知識點(diǎn)框架

  【摘要】線性代數(shù)作為構(gòu)成考研數(shù)學(xué)的三大科目之一,重要性不言而喻。本文為大家總結(jié)了線性代數(shù)科目的知識點(diǎn)框架,希望可以幫助到大家??佳袔蛿y手2016大綱解析人第一時間解讀大綱,點(diǎn)擊免費(fèi)報(bào)名。

  
 

  
  線性代數(shù)的學(xué)習(xí)切入點(diǎn)是線性方程組。換言之,可以把線性代數(shù)看作是在研究線性方程組這一對象的過程中建立起來的學(xué)科。

      ?線性方程組
  線性方程組的特點(diǎn):方程是未知數(shù)的一次齊次式,方程組的數(shù)目s和未知數(shù)的個數(shù)n可以相同,也可以不同。
  關(guān)于線性方程組的解,有三個問題值得討論:
      1、方程組是否有解,即解的存在性問題;
      2、方程組如何求解,有多少個;
      3、方程組有不止一個解時,這些不同的解之間有無內(nèi)在聯(lián)系,即解的結(jié)構(gòu)問題。

  ?高斯消元法
      這最基礎(chǔ)和最直接的求解線性方程組的方法,其中涉及到三種對方程的同解變換:
      1、把某個方程的k倍加到另外一個方程上去;
      2、交換某兩個方程的位置;
      3、用某個常數(shù)k乘以某個方程。我們把這三種變換統(tǒng)稱為線性方程組的初等變換。
  任意的線性方程組都可以通過初等變換化為階梯形方程組。
  由具體例子可看出,化為階梯形方程組后,就可以依次解出每個未知數(shù)的值,從而求得方程組的解。
  對方程組的解起決定性作用的是未知數(shù)的系數(shù)及其相對位置,所以可以把方程組的所有系數(shù)及常數(shù)項(xiàng)按原來的位置提取出來,形成一張表,通過研究這張表,就可以判斷解的情況。我們把這樣一張由若干個數(shù)按某種方式構(gòu)成的表稱為矩陣。
  可以用矩陣的形式來表示一個線性方程組,這至少在書寫和表達(dá)上都更加簡潔。

  ?系數(shù)矩陣和增廣矩陣
  高斯消元法中對線性方程組的初等變換,就對應(yīng)的是矩陣的初等行變換。階梯形方程組,對應(yīng)的是階梯形矩陣。換言之,任意的線性方程組,都可以通過對其增廣矩陣做初等行變換化為階梯形矩陣,求得解。
  階梯形矩陣的特點(diǎn):左下方的元素全為零,每一行的第一個不為零的元素稱為該行的主元。
  對不同的線性方程組的具體求解結(jié)果進(jìn)行歸納總結(jié)(有唯一解、無解、有無窮多解),再經(jīng)過嚴(yán)格證明,可得到關(guān)于線性方程組解的判別定理:首先是通過初等變換將方程組化為階梯形,若得到的階梯形方程組中出現(xiàn)d=0這一項(xiàng),則方程組無解,若未出現(xiàn)d=0一項(xiàng),則方程組有解;在方程組有解的情況下,若階梯形的非零行數(shù)目r等于未知量數(shù)目n,方程組有唯一解;若r<n,則方程組有無窮多解。
  在利用初等變換得到階梯型后,還可進(jìn)一步得到最簡形,使用最簡形,最簡形的特點(diǎn)是主元上方的元素也全為零,這對于求解未知量的值更加方便,但代價是之前需要經(jīng)過更多的初等變換。在求解過程中,選擇階梯形還是最簡形,取決于個人習(xí)慣。

      ?齊次方程組
  常數(shù)項(xiàng)全為零的線性方程稱為齊次方程組,齊次方程組必有零解。
  齊次方程組的方程組個數(shù)若小于未知量個數(shù),則方程組一定有非零解。
  利用高斯消元法和解的判別定理,以及能夠回答前述的基本問題:解的存在性問題和如何求解的問題,這是以線性方程組為出發(fā)點(diǎn)建立起來的最基本理論。
  對于n個方程n個未知數(shù)的特殊情形,我們發(fā)現(xiàn)可以利用系數(shù)的某種組合來表示其解,這種按特定規(guī)則表示的系數(shù)組合稱為一個線性方程組(或矩陣)的行列式。行列式的特點(diǎn):有n!項(xiàng),每項(xiàng)的符號由角標(biāo)排列的逆序數(shù)決定,是一個數(shù)。

  通過對行列式進(jìn)行研究,得到了行列式具有的一些性質(zhì)(如交換某兩行其值反號、有兩行對應(yīng)成比例其值為零、可按行展開等等),這些性質(zhì)都有助于我們更方便的計(jì)算行列式。
  用系數(shù)行列式可以判斷n個方程的n元線性方程組的解的情況,這就是克萊姆法則。
  總而言之,可把行列式看作是為了研究方程數(shù)目與未知量數(shù)目相等的特殊情形時引出的一部分內(nèi)容。

  (實(shí)習(xí)編輯:趙峰)

關(guān)于"最后階段,真題的正確打開方式_備考經(jīng)驗(yàn)_考研幫"15名研友在考研幫APP發(fā)表了觀點(diǎn)

掃我下載考研幫

考研幫地方站更多

你可能會關(guān)心:

來考研幫提升效率

× 關(guān)閉