考研幫 > 數(shù)學(xué) > 復(fù)習(xí)經(jīng)驗

干貨:2021考研數(shù)學(xué)線性代數(shù)總結(jié)復(fù)習(xí)四部曲

  目前已經(jīng)到了六月,考研數(shù)學(xué)的復(fù)習(xí)應(yīng)該復(fù)習(xí)完成二輪了,很多同學(xué)只注重高數(shù)的復(fù)習(xí),對其他兩科的重視度不夠,這樣的情況下其他兩科知識點很可能給你拉分,不能忽視考研數(shù)學(xué)線代與概率的復(fù)習(xí),幫幫整理了“2021考研數(shù)學(xué)線性代數(shù)總結(jié)復(fù)習(xí)四部曲”的文章,希望對大家有所幫助。

  1.掌握基本概念

  在線代中,定義特別重要,定義往往是掌握原理的出發(fā)點的,例如線性相關(guān)無關(guān),矩陣的關(guān)系中等價,相似,合同等。把這些說法用數(shù)學(xué)語言嚴(yán)格的表示出來就是定義,然后再分析相互之間有什么聯(lián)系??佳袛?shù)學(xué)中會出現(xiàn)一些考查說法的選擇題,這類題就是專撿那些易混淆部分來考的,命題人可謂是挖空心思,無孔不入,大家可以翻翻歷年看看就明白了。

  線性代數(shù)的概念很多,重要的概念有:代數(shù)余子式,伴隨矩陣,逆矩陣,初等變換與初等矩陣,正交變換與正交矩陣,秩(矩陣、向量組、二次型),等價(矩陣、向量組),線性組合與線性表出,線性相關(guān)與線性無關(guān),極大線性無關(guān)組,基礎(chǔ)解系與通解,解的結(jié)構(gòu)與解空間,特征值與特征向量,相似與相似對角化,二次型的標(biāo)準(zhǔn)形與規(guī)范形,正定,合同變換與合同矩陣。

  2.弄清聯(lián)系和區(qū)別

  線性代數(shù)內(nèi)容前后聯(lián)系緊密,相互滲透,各知識點之間有著千絲萬縷的聯(lián)系,因此解題方法靈活多變。記住知識點不是難事,但要把握好知識點的相互聯(lián)系,非得下一番功夫不可。

  首先要把握定理和公式成立的條件,一定要注意同時把某一知識點對應(yīng)的適用條件掌握好!再者要弄清知識點之間的縱橫聯(lián)系,另外還有容易混淆的地方,如矩陣的等價和向量組的等價之間的關(guān)系,線性相關(guān)與線性表示等。掌握它們之間的聯(lián)系與區(qū)別,對大家做線性代數(shù)部分的大題也有很大的幫助。

  3.建立知識框架

  基礎(chǔ)階段線代要大概圍繞以下內(nèi)容建立知識框架,即線性方程組,向量,秩,矩陣運算。建立知識框架,類似于圍棋中的布局,要想下好棋,大局觀非常重要,這在線性代數(shù)尤其重要。

  線性代數(shù)的學(xué)習(xí)切入點:線性方程組,線代貫穿的主線就是求方程組的解,換言之,可以把線性代數(shù)看作是在研究線性方程組這一對象的過程中建立起來的學(xué)科,不管是向量的線性相關(guān),線性表示,還是求特征向量,都是圍繞線性方程組。關(guān)于線性方程組的解,有三個問題值得討論:(1)方程組是否有解,即解的存在性問題(2)方程組如何求解,有多少個解(3)方程組有不止一個解時,這些不同的解之間有無內(nèi)在聯(lián)系,即解的結(jié)構(gòu)問題。

  線性方程組求解主要是高斯消元法,在利用求解的過程中涉及到一種重要的運算,即把某一行的倍數(shù)加到另一行上,也就是說,為了研究從線性方程組的系數(shù)和常數(shù)項判斷它有沒有解,有多少解的問題,需要定義這樣的運算,這提示我們可以把問題轉(zhuǎn)為直接研究這種對n元有序數(shù)組的數(shù)量乘法和加法運算,即向量。例如大家可以通過一些簡單例子體會線性相關(guān)和線性無關(guān)(零向量一定線性無關(guān)、單個非零向量線性無關(guān)、單位向量組線性無關(guān)等等)。也可以從多個角度(線性組合角度、線性表出角度、齊次線性方程組角度)體會線性相關(guān)和線性無關(guān)的本質(zhì)。這部分內(nèi)容概念多,定理性質(zhì)也多,光憑記憶是很難掌握的。

  秩是一個非常深刻而重要的概念,就可以判斷向量組是線性相關(guān)還是線性無關(guān),有了秩的概念以后,我們可以把線性相關(guān)的向量組用它的極大線性無關(guān)組來替換掉,從而得到線性方程組有解的充分要條件:若系數(shù)矩陣的列向量組的秩和增廣矩陣的列向量組的秩相等,則有解,若不等,則無解。秩的靈活運用,充分體現(xiàn)了線性代數(shù)中推理和抽象性強的特點,同學(xué)們在做題時要好好體會,因此有要進(jìn)一步好好研究向量組的秩的計算方法。

  在研究線性方程組的解的過程當(dāng)中,同學(xué)們注意到矩陣及其秩有著重要的地位和應(yīng)用,故還有要對矩陣及其運算進(jìn)行專門研究,建立這方面的知識框架。

  4.做題鞏固

  初步掌握知識點以后要做什么?自然是用于解題了,做題一定要建立在完成知識點的總結(jié)的基礎(chǔ)上,好將自己的總結(jié)筆記分成兩類,一類是知識點筆記,一類是題型思路歸納,這樣一來反饋學(xué)習(xí)效果更明顯,思路更清晰。一定要加強訓(xùn)練,做題鞏固,并注重邏輯性與敘述表述。

  相信大家通過以上復(fù)習(xí)建議,并不斷地歸納總結(jié),初步搞清知識點的內(nèi)在聯(lián)系,就能逐步使所學(xué)知識融會貫通,這就為強化階段的進(jìn)一步學(xué)習(xí)打下了堅實的基礎(chǔ)。

  ?幫幫友情提示:干貨:2021考研數(shù)學(xué):線代提升技巧匯總

關(guān)于"最后階段,真題的正確打開方式_備考經(jīng)驗_考研幫"15名研友在考研幫APP發(fā)表了觀點

掃我下載考研幫

考研幫地方站更多

你可能會關(guān)心:

來考研幫提升效率

× 關(guān)閉