摘要:數(shù)學想要獲取高分,必要的公式定理一定要熟記。下面小編為大家整理了2020考研數(shù)學高數(shù)部分的公式定理,供大家參考。?中值定理與導數(shù)的應
作者
佚名
摘要:數(shù)學想要獲取高分,必要的公式定理一定要熟記。下面小編為大家整理了2020考研數(shù)學高數(shù)部分的公式定理,供大家參考。
?中值定理與導數(shù)的應用
1、定理(羅爾定理)如果函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),在開區(qū)間(a,b)內可導,且在區(qū)間端點的函數(shù)值相等,即f(a)=f(b),那么在開區(qū)間(a,b)內至少有一點ξ(a
2、定理(拉格朗日中值定理)如果函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),在開區(qū)間(a,b)內可導,那么在開區(qū)間(a,b)內至少有一點ξ(a
3、定理(柯西中值定理)如果函數(shù)f(x)及F(x)在閉區(qū)間[a,b]上連續(xù),在開區(qū)間(a,b)內可導,且F’(x)在(a,b)內的每一點處均不為零,那么在開區(qū)間(a,b)內至少有一點ξ,使的等式[f(b)-f(a)]/[F(b)-F(a)]=f’(ξ)/F’(ξ)成立。
4、洛必達法則應用條件只能用與未定型諸如0/0、∞/∞、0×∞、∞-∞、00、1∞、∞0等形式。
5、函數(shù)單調性的判定法設函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),在開區(qū)間(a,b)內可導,那么:(1)如果在(a,b)內f’(x)>0,那么函數(shù)f(x)在[a,b]上單調增加;(2)如果在(a,b)內f’(x)
如果函數(shù)在定義區(qū)間上連續(xù),除去有限個導數(shù)不存在的點外導數(shù)存在且連續(xù),那么只要用方程f’(x)=0的根及f’(x)不存在的點來劃分函數(shù)f(x)的定義區(qū)間,就能保證f’(x)在各個部分區(qū)間內保持固定符號,因而函數(shù)f(x)在每個部分區(qū)間上單調。
6、函數(shù)的極值如果函數(shù)f(x)在區(qū)間(a,b)內有定義,x0是(a,b)內的一個點,如果存在著點x0的一個去心鄰域,對于這去心鄰域內的任何點x,f(x)f(x0)均成立,就稱f(x0)是函數(shù)f(x)的一個極小值。
在函數(shù)取得極值處,曲線上的切線是水平的,但曲線上有水平曲線的地方,函數(shù)不一定取得極值,即可導函數(shù)的極值點必定是它的駐點(導數(shù)為0的點),但函數(shù)的駐點卻不一定是極值點。
定理(函數(shù)取得極值的必要條件)設函數(shù)f(x)在x0處可導,且在x0處取得極值,那么函數(shù)在x0的導數(shù)為零,即f’(x0)=0.定理(函數(shù)取得極值的第一種充分條件)設函數(shù)f(x)在x0一個鄰域內可導,且f’(x0)=0,那么:(1)如果當x取x0左側臨近的值時,f’(x)恒為正;當x去x0右側臨近的值時,f’(x)恒為負,那么函數(shù)f(x)在x0處取得極大值;(2)如果當x取x0左側臨近的值時,f’(x)恒為負;當x去x0右側臨近的值時,f’(x)恒為正,那么函數(shù)f(x)在x0處取得極小值;(3)如果當x取x0左右兩側臨近的值時,f’(x)恒為正或恒為負,那么函數(shù)f(x)在x0處沒有極值。
定理(函數(shù)取得極值的第二種充分條件)設函數(shù)f(x)在x0處具有二階導數(shù)且f’(x0)=0,f’’(x0)≠0那么:(1)當f’’(x0)0時,函數(shù)f(x)在x0處取得極小值;駐點有可能是極值點,不是駐點也有可能是極值點。
7、函數(shù)的凹凸性及其判定設f(x)在區(qū)間Ix上連續(xù),如果對任意兩點x1,x2恒有f[(x1+x2)/2][f(x1)+f(x1)]/2,那么稱f(x)在區(qū)間Ix上圖形是凸的。
定理設函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),在開區(qū)間(a,b)內具有一階和二階導數(shù),那么(1)若在(a,b)內f’’(x)>0,則f(x)在閉區(qū)間[a,b]上的圖形是凹的;(2)若在(a,b)內f’’(x)
判斷曲線拐點(凹凸分界點)的步驟(1)求出f’’(x);(2)令f’’(x)=0,解出這方程在區(qū)間(a,b)內的實根;(3)對于(2)中解出的每一個實根x0,檢查f’’(x)在x0左右兩側鄰近的符號,如果f’’(x)在x0左右兩側鄰近分別保持一定的符號,那么當兩側的符號相反時,點(x0,f(x0))是拐點,當兩側的符號相同時,點(x0,f(x0))不是拐點。
在做函數(shù)圖形的時候,如果函數(shù)有間斷點或導數(shù)不存在的點,這些點也要作為分點。
關于"最后階段,真題的正確打開方式_備考經(jīng)驗_考研幫"有15名研友在考研幫APP發(fā)表了觀點
掃我下載考研幫
最新資料下載
2021考研熱門話題進入論壇
考研幫地方站更多
你可能會關心:
來考研幫提升效率