摘要:偏導數(shù)計算難度不大,但是想要快速求解一系列問題要用對方法和小技巧,下面一起和幫幫看看吧。這類題目難度不大,只需要大家掌握復合函
作者
佚名
摘要:偏導數(shù)計算難度不大,但是想要快速求解一系列問題要用對方法和小技巧,下面一起和幫幫看看吧。
這類題目難度不大,只需要大家掌握復合函數(shù)求導的鏈式法則即可,但若考題以解答題的形式出現(xiàn),往往計算量較大,考生往往沒有耐心做完這類題目,事實上這類題目有明顯的技巧可尋,一旦求出了一階偏導,可以立刻得到二階偏導,我們帶領大家來學習下這個技巧。為此我們首先回顧一下復合函數(shù)求導的鏈式法則,然后給出求二階的技巧(重點在二階的技巧)。
注:為敘述簡單,函數(shù)都具有相應的求導階數(shù),且相應的一階偏導、二階偏導連續(xù)??佳姓骖}中都會滿足這些基本的條件。
以上討論了考研數(shù)學如何三分鐘之內解決偏導數(shù)計算的解答題,并給出了三道真題的解析,希望能對大家復習備考有所幫助。
?。▽嵙曅【帲汗具耍?/p>
關于"最后階段,真題的正確打開方式_備考經(jīng)驗_考研幫"有15名研友在考研幫APP發(fā)表了觀點
掃我下載考研幫
最新資料下載
2021考研熱門話題進入論壇
考研幫地方站更多
你可能會關心:
來考研幫提升效率