考研幫 > 數(shù)學 > 復習經(jīng)驗

考前線代重點及易錯點清單,你都掌握了嗎?

  摘要:上周五跟大家分享了考研數(shù)學中高數(shù)的考試重點,今天跟大家分享線代的考試重點及易錯點清單,希望在最后的日子里可以幫到你。

  一、核心考點

  1、行列式


  本章的核心考點是行列式的計算,包括數(shù)值型行列式的計算和抽象型行列式的計算,其中數(shù)值型行列式的計算又分為低階行列式和高階行列式兩種類型。對于低階的數(shù)值型行列式來說,主要的處理方法是:找1,化0,展開,即首先找行列式中最簡單的元素,利用行列式的性質(zhì)將最簡單元素所在的行或者列的其他元素均化為0,然后再利用行列式的展開定理對目標行列式進行降階,最后利用已知公式求得目標行列式的值。對于高階的數(shù)值型行列式來說,它的處理方法有兩種:一是三角化;二是展開。所謂的三角化就是利用行列式的性質(zhì)將目標行列式化成上三角行列式或者下三角行列式,三角化的主要思想就是化零,即利用行列式中各元素之間的關系通過行列式的性質(zhì)化出較多的零,它是解決“爪型”行列式和“對角線型”行列式的主要方法。而所謂的展開就是利用行列式的展開定理對目標行列式進行降階,一般解決的是遞推形式的行列式,而它的關鍵點則是找出與的結構。對于數(shù)值型行列式來說,考試直接考查的題目相對較少,它總是伴隨著線性方程組或者特征值與特征向量等的相關知識出題的。對行列式的考查多以抽象型行列式的形式出現(xiàn),這一部分的考題綜合性很強,與后續(xù)章節(jié)的聯(lián)系比較緊密,除了要用到行列式常見的性質(zhì)以外,更需要結合矩陣的運算,綜合特征值特征向量等相關考點,對考生能力要求較高,需要考生有扎實的基礎,對線性代數(shù)整個學科進行過細致而全面的復習。抽象行列式的計算常見的方法有三種:一是利用行列式的性質(zhì);二是使用矩陣運算;三是結合特征值與特征向量。

  2、矩陣

  矩陣是線性代數(shù)的核心內(nèi)容,它是后續(xù)章節(jié)知識的基礎,矩陣的概念、運算及其相關理論貫穿著整個線性代數(shù)這門學科。這部分的考點較多,重點是矩陣的運算,尤其是逆矩陣、矩陣的初等變換和矩陣的秩是重中之重的核心考點??荚囶}目中經(jīng)常涉及到伴隨矩陣的定義、性質(zhì)、行列式、可逆陣的逆矩陣、矩陣的秩及包含伴隨矩陣的矩陣方程等。另外,這幾年還經(jīng)常出現(xiàn)與初等變換與初等矩陣相關的命題。本章常見題型有:計算方陣的冪、與伴隨矩陣相關的命題、與初等變換相關的命題、有關逆矩陣的計算與證明、解矩陣方程等。

  3、向量

  本章的核心考點是向量組的線性相關性的判斷,它也是線性代數(shù)的重點,同時也是考研的重點。2018的考生一定要吃透向量組線性相關性的概念,熟練掌握有關性質(zhì)及判定法并能靈活應用,在做此處題目的時候要學會與線性表出、向量組的秩及線性方程組等相關知識聯(lián)系,從各個方面加強對向量組線性相關性的理解。此章常見的考試題型有:判定向量組的線性相關性、向量組線性相關性的證明、判定一個向量能否由一向量組線性表出、向量組的秩和極大無關組的求法、有關秩的證明、有關矩陣與向量組等價的命題、與向量空間有關的命題(數(shù)一要求)。

  4、線性方程組

  考研數(shù)學重點考查的章節(jié),從歷年真題來看,方程組出題的頻率較高,幾乎每年都有考題。本章的核心考點有:解的判定與解的結構、齊次線性方程組基礎解系的求解與證明、齊次(非齊次)線性方程組的求解(含對參數(shù)取值的討論)。主要的題型有:線性方程組的求解、方程組解向量的判別及解的性質(zhì)、齊次線性方程組的基礎解系、非齊次線性方程組的通解結構、兩個方程組的公共解、同解問題等。本章節(jié)常與向量章節(jié)聯(lián)系在一起出題,二者屬于同一問題的不同描述,在考題中經(jīng)常是交替出現(xiàn)的。

  5、特征值與特征向量

  考研數(shù)學重點考查的章節(jié),線性代數(shù)的核心內(nèi)容,題多分值大,共有三部分重點內(nèi)容:特征值和特征向量的概念及計算、方陣的相似對角化、實對稱矩陣的正交相似對角化。核心題型有:數(shù)值型矩陣的特征值和特征向量的計算、抽象型矩陣特征值和特征向量的求法、判定矩陣的相似對角化、由特征值或特征向量反求矩陣A、有關實對稱矩陣的問題。本章節(jié)與二次型聯(lián)系也很緊密。

  6、二次型

  這部分需要掌握兩點:一是用正交變換法和配方法化二次型為標準形,核心是正交變換法。但是需要注意的是對于出現(xiàn)多重特征值時,解方程組所得的對應的特征向量不一定是正交的,這時需要對所得到的向量組進行施密特正交化,然后再規(guī)范化。二是二次型正定性的判斷,核心考點是二次型正定性的判定方法。

  二、易錯考點



  【小編說】覺得文章內(nèi)容不錯的話,記得點一下右下角收藏哦~你的收藏是對我們最大的鼓勵!

關于"最后階段,真題的正確打開方式_備考經(jīng)驗_考研幫"15名研友在考研幫APP發(fā)表了觀點

掃我下載考研幫

考研幫地方站更多

你可能會關心:

來考研幫提升效率

× 關閉