考研幫 > 數(shù)學(xué) > 復(fù)習(xí)經(jīng)驗(yàn)

2018考研數(shù)學(xué):十分鐘教你搞定向量和線性方程組

  摘要:向量和線性方程組是考研數(shù)學(xué)的第一位大咖,每年都會(huì)蒞臨考場(chǎng),也是各位考研er比較害怕的一位,幫幫今天就為你揭開他的神秘面紗,我們一起來(lái)一探究竟。

  ▲向量是線性代數(shù)的核心內(nèi)容之一,是研究線性方程組的解而引入的工具,在考研數(shù)學(xué)線性代數(shù)這一科目中出題頻率很高,屬于每年必考題型,考查方式為選擇題和解答題,分值4分到11分不等。

  向量是數(shù)學(xué)一、數(shù)學(xué)二和數(shù)學(xué)三均考查的內(nèi)容,根據(jù)考試大綱,數(shù)學(xué)一比數(shù)學(xué)二和數(shù)學(xué)三的考試內(nèi)容多了一個(gè)考點(diǎn)。多出的考試內(nèi)容包括:“了解向量空間、子空間、基底、維數(shù)及坐標(biāo)等概念,了解基變換及坐標(biāo)變換公式,會(huì)求過(guò)渡矩陣”,這些內(nèi)容雖然考試的頻率不高,但考數(shù)學(xué)一的考生也應(yīng)了解其概念和掌握基本計(jì)算方法。

  ??碱}型:第一,判斷或證明向量組的線性相關(guān)性。對(duì)于抽象向量組來(lái)說(shuō),主要利用向量組的定義即向量組對(duì)應(yīng)的齊次線性方程組有無(wú)非零解來(lái)判定;而對(duì)于數(shù)值型向量組來(lái)說(shuō),主要利用向量組所構(gòu)成的矩陣的秩或行列式來(lái)判定。

  第二,判斷某個(gè)向量是否可由一組向量線性表示,以及求其表達(dá)式,這類題目完全可以轉(zhuǎn)換為非齊次線性方程組是否有解,有解時(shí)求其所有的解來(lái)解決。

  第三,求向量組的極大線性無(wú)關(guān)性,并寫出其他向量由極大線性無(wú)關(guān)組的表達(dá)式。對(duì)列向量組構(gòu)成的矩陣進(jìn)行初等行變換,化為行最簡(jiǎn)形矩陣即可。

  第四,判斷或證明向量組之間是否等價(jià)。一般用定義來(lái)證,也就是證明它們可以互相線性表示。

  ▲線性方程組是線性代數(shù)的另一核心考點(diǎn)??荚囍?,線性方程組的內(nèi)容往往以解答題的形式出現(xiàn),分值為11分,2016年數(shù)學(xué)一考了一道大題,11分,2017年也考察了一道大題,11分。

  ??碱}型:第一,齊次線性方程組有無(wú)零解和非齊次線性方程組是否有解的判定。對(duì)于齊次線性方程組,當(dāng)方程組的方程個(gè)數(shù)和未知量的個(gè)數(shù)不等時(shí),可以按照系數(shù)矩陣的秩和未知量個(gè)數(shù)的大小關(guān)系來(lái)判定,還可以利用系數(shù)矩陣的列向量組是否相關(guān)來(lái)判定;當(dāng)方程組的方程個(gè)數(shù)和未知量個(gè)數(shù)相同時(shí),可以利用系數(shù)行列式與零的大小關(guān)系來(lái)判定,還可以利用系數(shù)矩陣有無(wú)零特征值來(lái)判定;對(duì)于非齊次線性方程組,可以利用系數(shù)矩陣的秩和增廣矩陣的秩是否相等即有關(guān)矛盾方程來(lái)判定,還可以從一個(gè)向量可否由一向量組線性表出來(lái)判定;當(dāng)方程個(gè)數(shù)和未知量個(gè)數(shù)相等時(shí),可以利用系數(shù)行列式是否為零來(lái)判定非齊次線性方程組的唯一解情況;今年的考題就體現(xiàn)了這種思想。

  第二,齊次線性方程組的非零解的結(jié)構(gòu)和非齊次線性方程組解的的無(wú)窮多解的結(jié)構(gòu)問(wèn)題。如果齊次線性方程組有無(wú)窮多個(gè)非零解時(shí),其通解是由其基礎(chǔ)解系來(lái)表示的;如果非齊次線性方程組有無(wú)窮多解時(shí),其通解是由對(duì)應(yīng)的齊次線性方程組和通解加本身一個(gè)特解所構(gòu)成;

  第三,齊次線性方程組的基礎(chǔ)解系的求解與證明。利用系數(shù)矩陣的極大線性無(wú)關(guān)組的內(nèi)容進(jìn)行分析;

  第四,齊次(非齊次)線性方程組的求解(含對(duì)參數(shù)取值的討論)。如果方程組的方程個(gè)數(shù)和未知量個(gè)數(shù)不相等時(shí),只能對(duì)其系數(shù)矩陣或增廣矩陣進(jìn)行初等行變換,化為階梯形矩陣來(lái)進(jìn)行討論;如果方程組的方程個(gè)數(shù)和未知量個(gè)數(shù)相同時(shí),初等行變換和行列式可以結(jié)合起來(lái)一起進(jìn)行分析和討論;

  第五,兩個(gè)方程組的公共解、通解問(wèn)題。這部分有固定解法,考生要多加練習(xí)。

  由于這部分常以大題出現(xiàn),分值較高,需要考生提高警惕,在理解的基礎(chǔ)上多做題。

關(guān)于"最后階段,真題的正確打開方式_備考經(jīng)驗(yàn)_考研幫"15名研友在考研幫APP發(fā)表了觀點(diǎn)

掃我下載考研幫

考研幫地方站更多

你可能會(huì)關(guān)心:

來(lái)考研幫提升效率

× 關(guān)閉